Extremal Betti Numbers of Some Classes of Binomial Edge Ideals

نویسندگان

  • AHMET DOKUYUCU
  • Ahmet Dokuyucu
چکیده

Let G be a simple graph on the vertex set [n] with edge set E(G) and let S be the polynomial ring K[x1, . . . , xn, y1, . . . , yn] in 2n variables endowed with the lexicographic order induced by x1 > · · · > xn > y1 > · · · > yn. The binomial edge ideal JG ⊂ S associated with G is generated by all the binomials fij = xiyj−xjyi with {i, j} ∈ E(G). The binomial edge ideals were introduced in [5] and, independently, in [8]. Meanwhile, many algebraic and homological properties of these ideals have been investigated; see, for instance, [1–3, 5, 7, 9–14]. In [2], the authors conjectured that the extremal Betti numbers of JG and in<(JG) coincide for any graph G. Here, < denotes the lexicographic order in S induced by the natural order of the variables. In this article, we give a positive answer to this conjecture when the graph G is a complete bipartite graph or a cycle. To this aim, we use some results proved in [12] and [14] which completely characterize the resolution of the binomial edge ideal JG when G is a cycle or a complete bipartite graph. In particular, in this case, it follows that JG has a unique extremal Betti number. In the first section we recall all the known facts on the resolutions of binomial edge ideals of the complete bipartite graphs and cycles. In Section 2, we study the initial ideal of JG when G is a bipartite graph or a cycle. We show that proj dim in<(JG) = proj dim JG and reg in<(JG) = reg JG, and, therefore, in<(JG) has a unique extremal Betti number as well. Finally, we show that the extremal Betti number of in<(JG) is equal to that of JG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Betti Numbers of some Classes of Binomial Edge Ideals

We study the Betti numbers of binomial edge ideal associated to some classes of graphs with large Castelnuovo-Mumford regularity. As an application we give several lower bounds of the Castelnuovo-Mumford regularity of arbitrary graphs depending on induced subgraphs.

متن کامل

Binomial Edge Ideals of Graphs

We characterize all graphs whose binomial edge ideals have a linear resolution. Indeed, we show that complete graphs are the only graphs with this property. We also compute some graded components of the first Betti number of the binomial edge ideal of a graph with respect to the graphical terms. Finally, we give an upper bound for the Castelnuovo-Mumford regularity of the binomial edge ideal of...

متن کامل

Initial Ideal of Binomial Edge Ideal in Degree 2

We study the initial ideal of binomial edge ideal in degree 2 ([in<(JG)]2), associated to a graph G. We computed dimension, depth, Castelnuovo-Mumford regularity, Hilbert function and Betti numbers of [in<(JG)]2 for some classes of graphs. AMS Mathematics Subject Classification (2010): 05E40, 16E30

متن کامل

Initial Ideal of Binomial Edge Ideal in degree 2 3

We study the initial ideal of binomial edge ideal in degree 2 ([in<(JG)]2), associated to a graph G. We computed dimension, depth, Castelnuovo-Mumford regularity, Hilbert function and Betti numbers of [in<(JG)]2 for some classes of graphs. AMS Mathematics Subject Classification (2010): 05E40, 16E30

متن کامل

Betti Numbers of Monomial Ideals and Shifted Skew Shapes

We present two new problems on lower bounds for Betti numbers of the minimal free resolution for monomial ideals generated in a fixed degree. The first concerns any such ideal and bounds the total Betti numbers, while the second concerns ideals that are quadratic and bihomogeneous with respect to two variable sets, but gives a more finely graded lower bound. These problems are solved for certai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015